
i

i

i

i

Privacy-Preserving
Collaborative Sequential
Pattern Mining

Justin Z. Zhan∗, LiWu Chang†, and Stan Matwin‡

1 Introduction
In the modern business world, collaborative data mining becomes especially im-
portant because of the mutual benefit it brings to the collaborators. During the
collaboration, each party of the collaboration needs to share its data with other
parties. If the parties don’t care about their data privacy, the collaboration can be
easily achieved. However, if the parties don’t want to disclose their private data to
each other, can they still achieve the collaboration?

To use the existing data mining algorithms, all parties need to send their
data to a trusted central place to conduct the mining. However in situations with
privacy concerns, parties may not trust anyone, including a third party. Generic so-
lutions for any kind of secure collaborative computing exist in the literature (e.g., [7]
and [3]). However, none of the proposed generic solutions is practical in handling
large-scale data sets because of the prohibitive extra cost in protecting data pri-
vacy. Therefore, practical solutions need to be developed. This need underlies the
rationale for our research.

Data mining includes a number of different tasks. This paper focuses on
sequential pattern mining. Specially, we study the problem of how to jointly mining
sequential patterns among multiple parties while preserving data privacy of each
party. To the best of our knowledge, the problem has not been investigated and is a
challenge to the information security and privacy community. Our contributions are
(1) to propose a new representation scheme for sequential data in order to facilitate

∗School of Information Technology and Engineering, University of Ottawa, Canada,
zhizhan@site.uottawa.ca

†Center for High Assurance Computer Systems, Naval Research Laboratory, USA,
lchang@itd.nrl.navy.mil.

‡School of Information Technology and Engineering, University of Ottawa, Canada,
stan@site.uottawa.ca

i

i

i

i

mining sequential patterns among private data sets, and (2) to develop a new secure
protocol for multiple parties to jointly compute the support measure of sequential
patterns.

The paper is organized as follows: Section 2 discusses the related work. We
then formally defines the mining sequential patterns on private data problem in
Section 3. In Section 4, we describe our secure protocols. We give our conclusion
in Section 5.

2 Related Work
Privacy-Preservation Multi-Party Data Mining In the early work on privacy-
preserving data mining, Lindell and Pinkas [4] proposed a solution to the privacy-
preserving classification problem using the oblivious transfer protocol, a power-
ful tool developed by the secure multi-party computation research. Vaidya and
Clifton [5] proposed to use the scalar product as the basic component to tackle
the problem of association rule mining in vertically partitioned data. Later, they
proposed a permutation scheme to solve the K-means clustering [6] over vertically
partitioned data. In [8], a secure procedure is provided to solve privacy-preserving
collaborative data mining.

Sequential Pattern Mining Sequential pattern mining, introduced in [1], is con-
cerned of inducing rules from a set of sequences of ordered items. Their method cal-
culates the support measures of sequences by iteratively joining those sub-sequences
whose supports exceed a given threshold. However, to the best of our knowledge,
the issue of secure sequential pattern mining has not been studied. In this paper,
we will propose a scheme to tackle the problem of privacy-preserving sequential
pattern mining over the vertically partitioned data.

3 Privacy-Preserving Collaborative Sequential
Pattern Mining

3.1 Background

Since its introduction in 1995 [1], the sequential pattern mining has received a great
deal of attention. It is still one of the most popular pattern-discovery methods in
the field of Knowledge Discovery. In the sequential pattern mining, we are given
a data set D of customer transactions. Each transaction consists of the following
fields: customer-id, transaction-time, and the items purchased in the transaction.
No customer has more than one transaction with the same transaction-time. We
do not consider quantities of items bought in a transaction: each item is a binary
variable representing whether an item was bought or not. An itemset is a non-
empty set of items. A sequence is an ordered list of itemsets. A customer support
is a sequence s if s is contained in the customer-sequence for this customer. The
support for a sequence is defined as the fraction of total customers who support
this sequence. Given a data set D of customer transactions, the problem of mining

i

i

i

i

sequential patterns is to find the maximal sequences among all sequences that have
a certain user-specified minimum support. Each such maximal sequence represents
a sequential pattern.

3.2 Problem Definition

We consider the scenario where multiple parties, each having a private data set
(denoted by D1, D2, · · ·, and Dn respectively), want to collaboratively conduct se-
quential pattern mining on the union of their data sets. Because they are concerned
about the data privacy, neither party is willing to disclose its raw data set to others.
Without loss of generality, we make the following assumptions on the data sets (the
assumptions can be achieved by pre-processing the data sets D1, D2, · · ·, and Dn,
and such pre-processing does not require one party to send its data set to other
parties):

1. D1, D2, · · ·, and Dn are data sets, where each data set consists of the customer-
id, transaction-time, and the items purchased in each transaction.

2. D1, D2, · · ·, and Dn contain the different types of items (e.g., they come from
different types of markets).

3. The identity of the transactions in D1, D2, · · ·, and Dn are the same.

4. The customer-ID and customer’s transaction time can be shared among the
parities, but the items that a customer actually bought are confidential.

Privacy-Preserving Collaborative Sequential Pattern Mining problem: Party 1
has a private data set D1, party 2 has a private data set D2, · · ·, and party n
has a private data set Dn. Data set [D1 ∪ D2 ∪ · · · ∪ Dn] is the union of D1,
D2, · · ·, and Dn (by vertically putting D1, D2, · · ·, and Dn together.) Let N be
a set of transactions with Nk representing the kth transaction. These n parties
want to conduct the sequential pattern mining on [D1 ∪ D2 ∪ D3 · · · ∪ Dn] and
to find the sequential patterns with support greater than the given threshold, but
they do not want to share their private data sets with each other. We say that a
sequential pattern of xi ≤ yj , where xi occurs before or at the same time as yj , has
support s in [D1 ∪ D2 ∪ · · · ∪ Dn] if s% of the transactions in [D1 ∪ D2 · · · ∪ Dn]
contain both xi and yj with xi happening before or at the same time as yj (namely,
s% = P (xi ∩ yj |xi ≤ yj)).

3.3 Sequential Pattern Mining Procedure

The procedure of mining sequential patterns contains the following steps:
Step I: Sorting

The data set [D1 ∪ D2 · · · ∪ Dn] is sorted, with customer-id as the major key
and transaction-time as the minor key. This step implicitly converts the original
transaction data set into a data set of customer sequences. Since the customer-id

i

i

i

i

and the transaction time are not private among the parties, this step can be exe-
cuted without using a secure protocol. As a result, transactions of a customer may
appear in more than one rows, where a row contains information of a customer
ID, a particular transaction time and items bought at this transaction time. For
example, suppose that data sets after being sorted by their customer-id numbers
are shown in Fig. 1. Then after being sorted by the transaction time, data tables
of Fig. 1 will become those shown in Fig. 2.

 Alice Bob Carol

1 06/25/03 30 1 06/30/03 90 1 06/28/03 110

2 06/10/03 10, 20 2 06/15/03 40, 60 2 06/13/03 107

3 06/25/03 30 3 06/10/03 45, 70 3 06/26/03 105, 106

2 06/20/03 9, 15 3 06/18/03 35, 50 3 06/19/03 103

3 06/30/03 5, 10 3 06/21/03 101, 102

 C-ID T-time Items Bought C-ID T-time Items Bought C-ID T-time Items Bought

Figure 1. Raw Data Sorted By Customer ID

Alice Bob Carol

 1 06/28/03 110

1 06/30/03 90

2 06/10/03 10, 20

2 06/13/03 107

2 06/15/03 40, 60

2 06/20/03 9, 15

3 06/10/03 45, 70

3 06/18/03 35, 50

3 06/19/03 103

3 06/21/03 101, 102

3 06/25/03 30

3 06/26/03 105, 106

3 06/30/03 5, 10

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A: The information is not available.

C-ID T-tme Items Bought C-ID T-time Item Bought C-ID T-time Item Bought

N/A

N/A

1 06/25/03 30 N/A N/A

N/A

 N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A

Figure 2. Raw Data Sorted By Customer ID and Transaction Time

Step II: Mapping
Each item of a row is considered as an attribute. We map each item of a

i

i

i

i

row (i.e., an attribute) to an integer in an increasing order and repeat for all rows.
Re-occurrence of an item will be mapped to the same integer. As a result, each
item becomes an attribute and all attributes are binary-valued. For instance, the
sequence < B, (A,C) >, indicating that the transaction B occurs prior to the trans-
action (A,C) with A and C being simultaneous events, will be mapped to integers
in the order B → 1, A → 2, C → 3, (A,C) → 4. During the mapping, the corre-
sponding transaction time will be kept. For instance, based on the sorted data set
of Fig. 2, we may construct the mapping table as shown in Fig. 3. We use ′−′ to
denote the mapping in Fig. 3. For example, ′30−1A′ means that we map 30 to 1A.
After the mapping, the mapped data sets are shown in Fig. 4.

 Alice 30 - 1A 10 - 2A 20 - 3A (10, 20) - 4A 9 - 5A 15 - 6A (9, 15) - 7A 5 - 8A (5, 10) - 9A

Note that, in Alice’s dataset, item 30 and 10 are reoccurred, so we map them to the same mapped-ID.

Bob 90 - 1B 40 - 2B 60 - 3B (40, 60) - 4B 35 - 5B 50 - 6B (35, 50) - 7B 45 - 8B 70 - 9B (45, 70)- 10B

Carol 110 - 1C 107 - 2C 103 - 3C 101 - 4C 102 - 5C (101,102)- 6C 105 - 7C 106 - 8C (105,106) - 9C

Figure 3. Mapping Table

Mapped
 1A 2A 3A 4A 5A 6A 7A 8A 9A

N/A : The information is not available.

C-ID ID

C-ID ID

C-ID ID

3 0 N/A 0 N/A 1 06/19/03 1 06/21/03 1 06/21/03 1 06/21/03 1 06/26/03 1 06/26/03 1 06/26/03

2 0 N/A 1 06/13/03 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A

 1C 2C 3C 4C 5C 6C 7C 8C 9C

1 1 06/28/03 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A

Carol

 1B 2B 3B 4B 5B 6B 7B 8B 9B

Mapped

Bob

 Alice

3 0 N/A 0 N/A 0 N/A 0 N/A 1 06/18/03 1 06/18/03 1 06/10/03 1 06/10/03 1 06/10/03

2 0 N/A 1 06/15/03 1 06/15/03 1 06/15/03 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A

1 1 06/30/03 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A

Mapped

3 1 06/25/03 1 06/30/03 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 1 06/30/03 1 06/30/03

2 0 N/A 1 06/10/03 1 06/10/03 1 06/10/03 1 06/20/03 1 06/20/03 1 06/20/03 0 N/A 0 N/A

1 1 06/25/03 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A

Figure 4. Data After Being Mapped

Step III: Mining
Our mining procedure will be based on mapped data set after the mapping

i

i

i

i

step. The general sequential pattern mining procedure contains multiple passes over
the data. In each pass, we start with a seed set of large sequences, where a large
sequence refers to a sequence whose itemsets all satisfy the minimum support. We
utilize the seed set for generating new potentially large sequences, called candidate
sequences. We find the support for these candidate sequences during the pass over
the data. At the end of each pass, we determine which of the candidate sequences
are actually large. These large candidates become the seed for the next pass. The
following is the procedure for mining sequential patterns on [D1 ∪ D2 · · · ∪ Dn].

1. L1 = large 1-sequence
2. for (k = 2; Lk−1 6= φ; k++) do{
3. Ck = apriori-generate(Lk−1)
4. for all candidates c ∈ Ck do {
5. Compute c.count

(Section 3.4 will show how to compute this count on private data)
6. Lk = Lk ∪ c | c.count ≥ minsup
7. end
8. end
9. Return ULk

where Lk stands for a sequence with k itemsets and Ck stands for the collection of
candidate k-sequences. The procedure apriori-generate is described as follows:

Step 1: join Lk−1 with Lk−1:

1. insert into Ck

2. select p.litemset1, · · ·, p.litemsetk−1, q.litemsetk−1, where p.litemset1 =
q.litemset1, · · ·,
p.litemsetk−2 = q.litemsetk−2

3. from Lk−1 p, Lk−1 q.

Step 2: delete all sequences c ∈ Ck such that some (k-1)-subsequence of c is not
in Lk−1.

Step IV: Maximization

Having found the set of all large sequences S in the sequence phase, we provide
the following procedure to find the maximal sequences.

1. for (k = m; k ≤ 1; k- -) do
2. for each k-sequence sk do
3. Delete all subsequences of sk from S

Step V: Converting

The items in the final large sequences are converted back to the original item
representation before the mapping step. For example, if 1A belongs to some large
sequential pattern, then 1A will be converted to item 30, according to the mapping
table, in the final large sequential patterns.

i

i

i

i

3.4 How to compute c.count

To compute c.count, in other words, to compute the support for some candidate
pattern (e.g., P (xi ∩ yi ∩ zi|xi ≥ yi ≥ zi)), we need to consider two aspects: one is
to deal with the condition part where zi occurs before yi and both of them occur
before xi; the other is to compute the actual counts for this sequential pattern.

If all the candidates belong to just one party, then c.count, which refers to
the frequency counts for candidates, can be computed by this party alone since this
party has all the information. However, if the candidates belong to different parties,
it is a non-trivial problem to conduct the joint frequency counts while protecting
privacy of data. We provide the following steps to conduct this cross-parties’ com-
putation.

Step I: Vector construction
The parities construct vectors for their own attributes (mapped-id). Suppose we
want to compute the c.count for 2A ≥ 2B ≥ 6C in Fig. 4. We construct three
vectors: 2A, 2B and 6C as in Fig. 5.

 2A

0 N/A

1 06/10/03

1 06/30/03

0 N/A

 0 N/A

 6C 2B

 0 N/A

 1 06/15/03

0 N/A

0 06/10/03 0 0 06/18/03

1 06/10/03 0 0 06/19/03

0 06/14/03

1 06/15/03

0 06/23/03

 T

 c.count

Step III

Step I

Step II

 Secure Component Protocol

 1 06/21/03

1 06/30/03 1 1 06/21/03

 X Y Z

Figure 5. An Protocol To Compute c.count

Step II: Transaction time comparison

1. All the parties randomly generate a set of resonable1 transaction time for

1Transaction time in the parties’s data sets is usually distributed over some periods. By rea-
sonable, we mean the randomly generated time should fall into these periods. If a party fails to
do so, it would let other parties to easily make a correct guess of its entry values.

i

i

i

i

entries in the vector where their values are 0. The purpose of this step is to
prevent one party from correctly guessing other parties’ data.

2. Randomly select one party who will receive the transaction time vectors from
the other two parties. For instance, in our example, Carol is selected to receive
transaction time vectors for 2A and 2B from Alice and Bob.

3. Carol then compares the transaction time of each entry of 2A, 2B, and 6C.
She makes a temporary vector T. If the transaction time does not satisfy the
requirement of 2A ≥ 2B ≥ 6C, she sets the corresponding entries of T to 0’s;
otherwise, she copies the original values in 6C to T (Fig. 5).

In the data sets, if the item value is 0, then there is no transaction time asso-
ciated with it. Therefore, if one party (e.g., Alice) sends her actual transaction time
vector to other parties, then other parties can immediately know the values of those
entries whose transaction time data are not present. Thus, it leads to an informa-
tion leak. To enhance the data privacy, instead of sending the actual transaction
time vector to other parties, Alice randomly generates a set of random transaction
time for those entries that have values 0’s. In other words, Alice adds some random
noise to the transaction time vector. By doing so, other parties (e.g., Bob) cannot
directly know which transaction does not occur. If Bob takes a random guess for
each entry value based on received transaction time vector, he has the probability
of 0.5 to make a correct guess provided that he has no other additional known in-
formation. With this random transaction time generation method, we can enhance
the data privacy.

Step III: Compute c.count
After they compare their transaction time for the candidate vectors (e.g., 2A,

2B and T), they apply the secure protocols, which will be discussed in Section 4, on
the value vectors to obtain the c.count. For example, to obtain c.count for 2A′, 2B′,
and 6C ′ in Fig. 5, they need to compute

∑N
i=1 X[i]·Z[i]·T [i] =

∑3
i=1 X[i]·Z[i]·T [i] =

0, where N is the total number of values in each vector.

4 Secure Protocols
How two or multiple parties jointly compute c.count without revealing their raw data
to each other is the challenge that we want to address. We propose two protocols to
tackle this challenge: One is for two parties to conduct the multiplication operation;
the other, with the first protocol as the basis, is designed for the secure multi-party
product operation.

4.1 Introducing The Commodity Server

For performance reasons, we use an extra server, the commodity server [2] in our
protocol. The parties could send requests to the commodity server and receive data
(called commodities) from the server, but the commodities must be independent of

i

i

i

i

the parties’ private data. The purpose of the commodities is to help the parties
conduct the desired computations.

The commodity server is semi-trusted in the following senses: (1) It is not
trusted, cannot derive the private information of the data from the parties, and
cannot learn the computation result. (2) It will not collude with all the parties. (3)
It follows the protocol correctly. Because of these characteristics, we say that it is
a semi-trusted party. In the real world, finding such a semi-trusted party is much
easier than finding a trusted party.

4.2 Component Protocols

Let’s first consider the case of two parties where n = 2 (more general cases where
n ≥ 3 will be discussed later). Alice has a vector X and Bob has a vector Y . Both
vectors have N elements. Alice and Bob want to compute the product between X
and Y such that Alice gets

∑N
i=1 Ux[i] and Bob gets

∑N
i=1 Uy[i], where

∑N
i=1 Ux[i]+

∑N
i=1 Uy[i] =

∑N
i=1 X[i]·Y [i] = X ·Y . Uy[i] and Ux[i] are random numbers. Namely,

the scalar product of X and Y is divided into two secret pieces, with one piece going
to Alice and the other going to Bob. We assume that random numbers are generated
from the integer domain.

Protocol 1. (Secure Two-party Protocol)

1. The Commodity Server generates two random numbers Rx[1] and Ry[1] , and
lets rx[1]+ry[1] = Rx[1] ·Ry[1], where rx[1] (or ry[1]) is a randomly generated
number. Then the server sends (Rx[1], rx[1]) to Alice, and (Ry[1], ry[1]) to
Bob.

2. Alice sends X̂[1] = X[1] + Rx[1] to Bob.

3. Bob sends Ŷ [1] = Y [1] + Ry[1] to Alice.

4. Bob generates a random number Uy[1], and computes X̂[1] · Y [1] + (ry[1] −
Uy[1]), then sends the result to Alice.

5. Alice computes (X̂[1] · Y [1] + (ry[1] − Uy[1])) − (Rx[1] · Ŷ [1]) + rx[1] = X[1] ·
Y [1] − Uy[1] + (ry[1] − Rx[1] · Ry[1] + rx[1]) = X[1] · Y [1] − Uy[1] = Ux[1].

6. Repeat step 1-5 to compute X[i]·Y [i] for i ∈ [2, N]. Alice then gets
∑N

i=1 Ux[i]
and Bob gets

∑N
i=1 Uy[i].

Theorem 1. Protocol 1 is secure such that Alice cannot learn Y and Bob cannot
learn X either.

Proof. The number X̂[i] = X[i] + Rx[i] is all what Bob gets. Because of the
randomness and the secrecy of Rx[i], Bob cannot find out X[i]. According to the
protocol, Alice gets (1) Ŷ [i] = Y [i]+Ry[i], (2) Z[i] = X̂[i] ·Y [i]+(ry[i]−Uy[i]), and
(3) rx[i], Rx[i], where rx[i]+ry[i] = Rx[i] ·Ry[i]. We will show that for any arbitrary

i

i

i

i

Y ′[i], there exists r′y[i], R′
y[i] and U ′

y[i] that satisfies the above equations. Assume
Y ′[i] is an arbitrary number. Let R′

y[i] = Ŷ [i] − Y ′[i], r′y[i] = Rx[i] · Ry[i] − rx[i],
and U ′

y[i] = X̂[i] · Y ′[i] + r′y[i]. Therefore, Alice has (1) Ŷ [i] = Y ′[i] + R′
y[i], (2)

Z[i] = X̂[i]·Y ′[i]+(r′y[i]−U ′
y[i]) and (3) rx[i], Rx[i], where rx[i]+r′y[i] = Rx[i]·R′

y[i].
Thus, from what Alice learns, there exists infinite possible values for Y [i]. Therefore,
Alice cannot know Y and neither can Bob know X.

We have discussed our protocol of secure number product for two parties.
Next, we will consider the protocol for securely computing the number product for
multiple parties. For simplicity, we only describe the protocol when n = 3. The
protocols for the cases when n > 3 can be similarly derived.

Protocol 2. (Secure Multi-party Protocol)
Step I

1. Alice generates a random number Rx[1].

2. Bob generates two random numbers R′
y[1] and R′′

y [1].

3. Carol generates a random number Rz[1].

Step II

1. Carol computes Z[1] + Rz[1] and sends it to Bob.

2. Bob computes Y [1] + Ry[1] and sends it to Alice.

3. Alice computes T [1] = (X[1] + Rx[1]) ∗ (Y [1] + Ry[1]) ∗ (Z[1] + Rz[1]).

4. Alice and Bob use Protocol 1 to compute X[1]·Ry[1], Rx[1]·Y [1], Rx[1]·Ry[1],
X[1] ·Y [1] and Rx[1] ·R′

y[1]. Then Alice obtains Ux[1], Ux[2], Ux[3], Ux[4] and
Ux[5] and Bob obtains Uy[1], Uy[2], Uy[3], Uy[4] and Uy[5].

5. Alice sends (Ux[1]+Ux[2]+Ux[3]) and (Ux[4]+Ux[1]+Ux[2]+Ux[5]) to Carol.

6. Bob sends (Uy[1]+Uy[2]+Uy[3]) and (Uy[4]+Uy[1]+Uy[2]+Uy[5]) to Carol.

7. Carol computes
T1[1] = (X[1] · Ry[1] + Rx[1] · Y [1] + Rx[1] · Ry[1]) · Z[1], and
T2[1] = (X[1] · Y [1] + X[1] · Ry[1] + Rx[1] · Y [1] + Rx[1] · R′

y[1]) · Rz[1].

8. Alice and Carol use Protocol 1 to compute Rx[1] · Rz[1] and send the values
they obtained from the protocol to Bob.

9. Bob computes T3[1] = R′′
y [1] · Rx[1] · Rz[1].

Step III

1. Repeat the Step I and Step II to compute T [i], T1[i], T2[i] and T3[i] for i ∈
[2, N].

i

i

i

i

2. Alice then gets
[a] =

∑N
i=1 T [i] =

∑N
i=1(X[i] + Rx[i]) ∗ (Y [i] + Ry[i]) ∗ (Z[i] + Rz[i]).

3. Bob gets
[b] =

∑N
i=1 T3[i] =

∑N
i=1(Y [i] + Ry[i]) ∗ (Z[i] + Rz[i]).

4. Carol gets
[c] =

∑N
i=1 T1[i] =

∑N
i=1(X[i] · Ry[i] + Rx[i] · Y [i] + Rx[i] · Ry[i]) · Z[i], and

[d] =
∑N

i=1 T2[i] =
∑N

i=1(X[i]·Y [i]+X[i]·Ry[i]+Rx[i]·Y [i]+Rx[i]·R′
y[i])·Rz[i].

Note that
∑N

i=1 X[i] · Y [i] · Z[i] =
∑N

i=1 T0[i] = [a] − [b] − [c] − [d].

Theorem 2. Protocol 2 is secure such that Alice cannot learn Y and Z, Bob cannot
learn X and Z, and Carol cannot learn X and Y .

Proof. According to the protocol, Alice obtains (1) (Y [i] + Ry[i]), and (2)(Z[i] +
Rz[i]). Bob gets (1)Rx[i] ·Rz[i]. Carol gets (1)(X[i] ·Ry[i]+Rx[i] ·Y [i]+Rx[i] ·Ry[i])
and (2)(X[i] · Y [i] + X[i] · Ry[i] + Rx[i] · Y [i] + Rx[i] · R′

y[i]).

Since Rx[i], Ry[i](= (R′
y[i] + R′′

y [i])) and Rz[i] are arbitrary random numbers.
From what Alice learns, there exists infinite possible values for Y [i] and Z[i]. From
what Bob learns, there also exists infinite possible values for Z[i]. From what Carol
learns, there still exists infinite possible values for X[i] and Y [i].

Therefore, Alice cannot learn Y and Z, Bob cannot learn X and Z, and Carol
cannot learn X and Y either.

5 Conclusion
In this paper, we considered the problem of mining sequential patterns with multiple
data sets. In order to effectively compute the support measure of a sequence, we
proposed a mapping scheme which converts data sequences into a binary matrix
representation for frequency count of patterns. We presented and analyzed our
proposed secure protocol designed for multiple parties to jointly conduct sequential
pattern mining. Within this secure protocol, we introduced the multiple-party
number product computation as the basic building block. In our future work, we
will extend our method to deal with other data mining algorithms.

i

i

i

i

Bibliography

[1] R. Agrawal and R. Srikant. Mining sequential patterns. In Philip S. Yu and Arbee
S. P. Chen, editors, Eleventh International Conference on Data Engineering, pages
3–14, Taipei, Taiwan, 1995. IEEE Computer Society Press.

[2] D. Beaver. Commodity-based cryptography (extended abstract). In Proceedings of
the twenty-ninth annual ACM symposium on Theory of computing, El Paso, TX USA,
May 4-6 1997.

[3] O. Goldreich. Secure multi-party computation (working draft).
http://www.wisdom.weizmann.ac.il/home/oded/ public html/foc.html, 1998.

[4] Y. Lindell and B. Pinkas. Privacy preserving data mining. Advances in Cryptology -
CRYPTO ’00, 1880 of Lecture Notes in Computer Science. Spinger-Verlag:36–54, 2000.

[5] J. Vaidya and C. Clifton. Privacy preserving association rule mining in vertically
partitioned data. In Proceedings of the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, July 23-26 2002.

[6] J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over vertically par-
titioned data. In Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Ddata Mining, 2003.

[7] A.C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual IEEE
Symposium on Foundations of Computer Science, 1982.

[8] Z. Zhan and L. Chang. Privacy-preserving collaborative data mining. In Workshop
on Foundation and New Direction of Data Mining at The 2003 IEEE International
Conference on Data Mining (ICDM’03), Melbourne, Florida, USA, November 19 2003.

